8-bit Methods for Efficient Deep Learning Tim Dettmers

Large models are not easily accessible

Model	Inference memory	Fine-tuning memory
T5-11B	22 GB	176 GB
OPT-66B	132 GB	1,056 GB
BLOOM 176B	350 GB	2,800 GB

Large models are not easily accessible

Model	Inference memory	Fine-tuning memory
T5-11B	22 GB	176 GB
OPT-66B	132 GB	1,056 GB
BLOOM 176B	352 GB	2,800 GB
	LLM.int8()	8-bit optimizers
Model	Inference memory	Fine-tuning memory
T5-11B	11 GB	66 GB
OPT-66B	66 GB 396 GB	
BLOOM 176B	176 GB	1,056 GB

Overview of my work in this talk

8-Bit Approximations for Parallelism in Deep Learning. Tim Dettmers, ICLR 2015.

8-bit Optimizers via Block-wise Quantization. **Tim Dettmers**, Mike Lewis, Sam Shleifer, Luke Zettlemoyer, *ICLR* 2022 ***Spotlight***.

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale . **Tim Dettmers**, Mike Lewis, Younes Belkada, Luke Zettlemoyer, *NeurIPS* 2022.

The case for 4-bit precision: k-bit Inference Scaling Laws. **Tim Dettmers**, Luke Zettlemoyer, in *submission*.

Personalize your own ChatGPT on a single GPU. **Tim Dettmers**, Artidoro Pagnoni, Ari Holtzman, Luke Zettlemoyer, *in progress*.

Background

How does quantization work?

Quantization as a mapping

Most general form of describe quantization is through a mapping from integers to float values normalized to the range -1.0 and 1.0.

 Int4 0 1 2 3 4 ...
 FP4 0 1 2 3 4 5 ...

 -7 -6 -5 -4 -3 ...
 -12 -8 -6 -4 -3 ...

Quantization as a mapping

Most general form of describe quantization is through a mapping from integers to float values normalized to the range -1.0 and 1.0.

The mapping format { index : float value} generalizes to all data types.

Quantization as a mapping

Most general form of describe quantization is through a mapping from integers to float values normalized to the range -1.0 and 1.0.

Int4 maps -7, -6, ... 6, 7 -> -1.0, -0.86 ... 0.86, 1.0

Given a tensor X of any real data type. We can apply 8-bit quantization as follows:

- 1. Normalize X into the range [-1.0, 1.0]
- 2. Find the closest value in the data type

Step (1) is usually done by dividing by the absolute maximum (absmax) value.

Quantization Example: A non-standard 2-bit data type

Map: {Index: 0, 1, 2, 3 -> Values: -1.0, 0.3, 0.5, 1.0}

Input tensor: [10, -3, 5, 4]

- 1. Normalize with absmax: [10, -3, 5, 4] -> [1, -0.3, 0.5, 0.4]
- 2. Find closest value: [1, -0.3, 0.5, 0.4] -> [1.0, 0.3, 0.5, 0.5]
- 3. Find the associated index: [1.0, 0.3, 0.5, 0.5] -> [3, 1, 2, 2] -> store
- Dequantization: load -> [3, 1, 2, 2] -> lookup -> [1.0, 0.3, 0.5, 0.5] -> denormalize -> [10, 3, 5, 5]

Floating point data types (FP8)

sign exponent fraction

3 bits for exponent, 4 for fraction:

- Good for large/small numbers
- Bad for precise numbers

1 bits for exponent, 6 for fraction:

- Good for precise numbers
- Bad for large/small numbers

Dynamic exponent quantization

Dynamic exponent and fraction bits:

- Good for small and large numbers
- High precision for small and intermediate numbers
- Bad precision for very large numbers

8-bit Optimizers

Motivation: Optimizers take up a lot of memory!

Memory depends on seq len, batch size, and model size

Input Gradients

Memory that only depends on model size

8-bit optimizers reduce memory consumption by 40%

		eigh	
Weights	Gradients	Master We	Adam Buffers 1+2

S

What do outliers in quantization look like?

Block-wise quantization

Putting it together: 8-bit optimizers

Results: Same accuracy/perplexity as 32-bit!

Optimizer	Task	Data	Model	$Metric^{\dagger}$	Time	Mem saved
32-bit AdamW	GLUE	Multiple	RoBERTa-Large	88.9	-	Reference
32-bit AdamW	GLUE	Multiple	RoBERTa-Large	88.6	17h	0.0 GB
32-bit Adafactor	GLUE	Multiple	RoBERTa-Large	88.7	24h	1.3 GB
8-bit AdamW	GLUE	Multiple	RoBERTa-Large	88.7	15h	2.0 GB
32-bit Momentum	CLS	ImageNet-1k	ResNet-50	77.1	-	Reference
32-bit Momentum	CLS	ImageNet-1k	ResNet-50	77.1	118h	0.0 GB
8-bit Momentum	CLS	ImageNet-1k	ResNet-50	77.2	116 h	0.1 GB
32-bit Adam	MT	WMT'14+16	Transformer	29.3	-	Reference
32-bit Adam	MT	WMT'14+16	Transformer	29.0	126h	0.0 GB
32-bit Adafactor	MT	WMT'14+16	Transformer	29.0	127h	0.3 GB
8-bit Adam	MT	WMT'14+16	Transformer	29.1	115h	1.1 GB
32-bit Momentum	MoCo v2	ImageNet-1k	ResNet-50	67.5		Reference
32-bit Momentum	MoCo v2	ImageNet-1k	ResNet-50	67.3	30 days	0.0 GB
8-bit Momentum	MoCo v2	ImageNet-1k	ResNet-50	67.4	28 days	0.1 GB
32-bit Adam	LM	Multiple	Transformer-1.5B	9.0	308 days	0.0 GB
32-bit Adafactor	LM	Multiple	Transformer-1.5B	8.9	316 days	5.6 GB
8-bit Adam	LM	Multiple	Transformer-1.5B	9.0	297 days	8.5 GB
32-bit Adam	LM	Multiple	GPT3-Medium	10.62	795 days	0.0 GB
32-bit Adafactor	LM	Multiple	GPT3-Medium	10.68	816 days	1.5 GB
8-bit Adam	LM	Multiple	GPT3-Medium	10.62	761 days	1.7 GB
32-bit Adam	Masked-LM	Multiple	RoBERTa-Base	3.49	101 days	0.0 GB
32-bit Adafactor	Masked-LM	Multiple	RoBERTa-Base	3.59	112 days	0.7 GB
8-bit Adam	Masked-LM	Multiple	RoBERTa-Base	3.48	94 days	1.1 GB

[†]Metric: GLUE=Mean Accuracy/Correlation. CLS/MoCo = Accuracy. MT=BLEU. LM=Perplexity.

Ablations on Language Modeling: All components needed!

Parameters	Optimizer	Dynamic	Block-wise	Stable Emb	Unstable (%)	Perplexity
	32-bit Adam				0	16.7
	32-bit Adam			\checkmark	0	16.3
	8-bit Adam				90	253.0
20014	8-bit Adam			\checkmark	50	194.4
209141	8-bit Adam	~			10	18.6
	8-bit Adam	\checkmark		\checkmark	0	17.7
	8-bit Adam	~	~		0	16.8
	8-bit Adam	\checkmark	\checkmark	\checkmark	0	16.4
1.3B	32-bit Adam				0	10.4
1.3B	8-bit Adam	\checkmark			100	N/A
1.3B	8-bit Adam	\checkmark		\checkmark	80	10.9
1.5B	32-bit Adam				0	9.0
1.5B	8-bit Adam	\checkmark	\checkmark	\checkmark	0	9.0

Large models such as OPT-175B need more than one computer to be run

8x GPU machine (\$)

8x GPU machine (\$)

GPU		GPU
GPU		GPU
GPU		GPU
GPU	Fast networking (\$\$\$)	GPU
GPU		GPU

- OPT-175B requires 350 GB of GPU memory
- 15 consumer GPUs required for OPT-175B
- 7 high-end GPUs required (\$15k per GPU)

With 8-bit weights we only need a single machine with consumer GPUs

16-bit

8x GPU machine (\$)

GPU		GPU
GPU		GPU
GPU		GPU
GPU	Fast networking (\$\$\$)	GPU
GPU		GPU

8x GPU machine (\$)

8-bit

Using OPT-175B on a single machine via 8-bit weights

With 8-bit weights we can reduce memory usage from 350 GiB to 175 GiB. This fits into a single machine with 8 consumer GPUs! Does it work?

The problem with quantizing outliers with large values

Absmax linear quantization with very large outliers:

3.50, 0.10, 0.02, 1.00, 0.30, 0.01, 0.05, 0.10 -> 127, 5, 1, 50, 15, 0, 2, 5

15.0, 0.10, 0.02, 1.00, 0.30, 0.01, 0.05, 0.10 -> 127, 0, 0, 10, 3, 0, 1, 1

Vector-wise quantization

Matrix multiplication is a series of inner products

Use two unique normalization constants for each inner product.

A @ B = C: [b x h] @ [h x o] -> [b x o]

- 1. Normalize A and B:
 - a. $absmaxA_vec = A16.absmax(1): [b x h] \rightarrow [b]$
 - b. absmaxB_vec = B16.absmax(0): [h x o] -> [o]
 - c. A8 = 127*A16/absmaxA_vec; B8 = 127*B16/absmaxB_vec: [b x h] * [b] -> [b x h]
- 2. C32 = A8 @ B8
- 3. C16f = C32/(127*127) * (absmaxA_vec @ absmaxB_vec): [b x o] + ([b] @ [o] -> [b x o])

Using OPT-175B on a single machine via 8-bit weights

With 8-bit weights we can reduce memory usage from 350 GiB to 175 GiB. This fits into a single machine with 8 consumer GPUs! Does it work?

Emergent Features

Finding outlier features in transformer hidden states

Hidden states with dimension [sequence, hidden_dim], outliers are in some hidden dimension.

You need to look in the right spots. At 2.7B there are 262,144 different hidden state values and only 960 are outliers (0.3%). Its easy to miss!

Fortunately, it becomes more common and highly systematic with scale.

Hidden states in transformers: 125m

	98.5% of the time	1.5% of the time
Î	[0.3, -0.1, 0.4]	[0.3, -0.1, -3.0]
	[-0.2, 0.5, 0.1]	[-0.2, 0.5, -6.0]
	[0.3, 0.9, -0.7]	[0.3, 0.9, -7.0]

Hidden/feature dimension

Sequence dimension

Hidden states in transformers: 350m

95% of the time	
[0.3, -0.1, 0.4]	
[-0.2, 0.5, 0.1]	
[0.3, 0.9, -0.7]	

5% of the time [0.3, -0.1, 5.0] [-0.2, 0.5, 6.0] [0.3, 0.9, 8.0]

Hidden states in transformers: 2.7B

91% of the time [0.3, -0.1, 0.4] [-0.2, 0.5, 0.1] [0.3, 0.9, -0.7] 9% of the time [0.3, -0.1, -16.0] [-0.2, 0.5, -10.0] [0.3, 0.9, -27.0]

Hidden states in transformers: 6.0B

83% of the time [0.3, -0.1, 0.4] [-0.2, 0.5, 0.1] [0.3, 0.9, -0.7]

17% of the time [0.3, -0.1, -15.0] [-0.2, 0.5, -17.0] [0.3, 0.9, -22.0]

Hidden states in transformers: 6.7B. Phase shift!

25% of the time [0.3, -0.1, 0.4] [-0.2, 0.5, 0.1] [0.3, 0.9, -0.7]

75% of the time [0.3, -0.1, -40.0] [-0.2, 0.5, -45.0] [0.3, 0.9, -61.0]

Hidden states in transformers: 13B

~25% of the time [0.3, -0.1, 0.4] [-0.2, 0.5, 0.1] [0.3, 0.9, -0.7]

~75% of the time [0.3, -0.1, -75.0] [-0.2, 0.5, -65.0] [0.3, 0.9, -50.0]

Hidden states in transformers: 66B

~25% of the time [0.3, -0.1, 0.4] [-0.2, 0.5, 0.1] [0.3, 0.9, -0.7]

~75% of the time [0.3, -0.1, -95.0] [-0.2, 0.5, -113.0] [0.3, 0.9, -87.0]

Emergent features: sudden vs. smooth emergence

Emergent features: very large outliers after emergence

Further Analysis: Outliers are important for performance

Take 6.7B transformer language model.

Attention Top-1 probability (single layer):

- Baseline: 40%
- Remove random dimensions: 39.9%
- Remove outliers: 15%

C4 validation perplexity (all layers)

- Baseline: 14.4 ppl
- Remove random dimensions: 14.4 ppl
- Remove outliers: 44.0 ppl

Mixed precision decomposition

Multiply outlier hidden/features dimensions (0.1%) in 16-bit.

Multiply other hidden/features dimensions (99.9%) in 8-bit.

$$\mathbf{C}_{f16} \approx \sum_{h \in O} \mathbf{X}_{f16}^{h} \mathbf{W}_{f16}^{h} + \mathbf{S}_{f16} \cdot \sum_{h \notin O} \mathbf{X}_{i8}^{h} \mathbf{W}_{i8}^{h}$$

No performance degradation with LLM.int8()

Quantization as a practical tool for memory reduction

Table 2: Different hardware setups and which methods can be run in 16-bit vs. 8-bit precision. We can see that our 8-bit method makes many models accessible that were not accessible before, in particular, OPT-175B/BLOOM.

			Largest Model that can be run		
Class	Hardware	GPU Memory	8-bit	16-bit	
Enterprise	8x A100	80 GB	OPT-175B / BLOOM	OPT-175B / BLOOM	
Enterprise	8x A100	40 GB	OPT-175B / BLOOM	OPT-66B	
Academic server	8x RTX 3090	24s GB	OPT-175B / BLOOM	OPT-66B	
Academic desktop	4x RTX 3090	24 GB	OPT-66B	OPT-30B	
Paid Cloud	Colab Pro	15 GB	OPT-13B	GPT-J-6B	
Free Cloud	Colab	12 GB	T0/T5-11B	GPT-2 1.3B	

Bit-level Inference Scaling Laws

Inference cost are mostly loading the bits in the weight matrix!

Moderns GPUs can multiply 200 elements in the same time it takes to load 1 element from memory.

Inputs

Inference costs of 4-bit 60B and 8-bit 30B LLMs similar

Weight matrix

Bit-level scaling laws experimental setup overview

- 35,000 zero-shot experiments (Lambada, Winogrande, PiQA, HellaSwag)
- 19m to 176B parameters
- OPT, BLOOM, BLOOMZ, Pythia/NeoX, GPT-2
- 3 to 8 bit precision (2-bit -> random performance)
- Two quantization concepts: centralization, blocking/grouping
- 4 data types: Integer, Float, dynamic exponent, quantile quantization

Given a zero-shot accuracy, what is the best k-bit quantization?

Does it help to treat outliers separately?

Comparison with GPTQ

What does help to improve scaling? Block size

What does help to improve scaling? Data types

Conclusion

8-bit optimizers make the training and fine-tuning more accessible.

LLM.int8() makes large language models more accessible, for example, zeroshot prompting for OPT-175 on a single node or 65B LLaMA on a single GPU.

Currently, 4-bit precision seems to be best for bit-level scaling of LLM inference. Improving bit-level scaling laws as a measure to improve inference latency.

k-bit methods work well in a variety settings and scales and can make deep learning more efficient and more accessible.