
8-bit Methods for Efficient
Deep Learning

Tim Dettmers

Large models are not easily accessible

Raffel et al., 2020, T5. Zhang et al., 2022, OPT., BigScience, 2022, BLOOM. 2

Model Inference memory Fine-tuning memory

T5-11B 22 GB 176 GB

OPT-66B 132 GB 1,056 GB

BLOOM 176B 350 GB 2,800 GB

https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2205.01068
https://huggingface.co/bigscience/bloom

Large models are not easily accessible

Raffel et al., 2020, T5. Zhang et al., 2022, OPT., BigScience, 2022, BLOOM. 3

Model Inference memory Fine-tuning memory

T5-11B 22 GB 176 GB

OPT-66B 132 GB 1,056 GB

BLOOM 176B 352 GB 2,800 GB

Model Inference memory Fine-tuning memory

T5-11B 11 GB 66 GB

OPT-66B 66 GB 396 GB

BLOOM 176B 176 GB 1,056 GB

LLM.int8() 8-bit optimizers

https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2205.01068
https://huggingface.co/bigscience/bloom

Overview of my work in this talk
8-Bit Approximations for Parallelism in Deep Learning. Tim Dettmers, ICLR 2015.

8-bit Optimizers via Block-wise Quantization. Tim Dettmers, Mike Lewis, Sam Shleifer, Luke Zettlemoyer,
ICLR 2022 *Spotlight*.

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale . Tim Dettmers, Mike Lewis, Younes
Belkada, Luke Zettlemoyer, NeurIPS 2022.

The case for 4-bit precision: k-bit Inference Scaling Laws. Tim Dettmers, Luke Zettlemoyer, in
submission.

Personalize your own ChatGPT on a single GPU. Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, Luke
Zettlemoyer, in progress.

4

Background

How does quantization work?

6

Quantization as a mapping

Most general form of describe quantization is through a mapping from integers
to float values normalized to the range -1.0 and 1.0.

Int4 0 1 2 3 4 … FP4 0 1 2 3 4 5 …
 -7 -6 -5 -4 -3 … -12 -8 -6 -4 -3 …

7

Quantization as a mapping

Most general form of describe quantization is through a mapping from integers to
float values normalized to the range -1.0 and 1.0.

Int4 0 1 2 3 4 … FP4 0 1 2 3 4 …
 -7 -6 -5 -4 -3 … -12 -8 -6 -4 -3 …

 -1 -0.86 -0.71 -0.57 -0.43 … -1 -0.67 -0.5 -0.33 -0.25 …

The mapping format { index : float value} generalizes to all data types.

8

Quantization as a mapping

Most general form of describe quantization is through a mapping from integers
to float values normalized to the range -1.0 and 1.0.

Int4 maps -7, -6, … 6, 7 -> -1.0, -0.86 … 0.86, 1.0

Given a tensor X of any real data type. We can apply 8-bit quantization as
follows:
1. Normalize X into the range [-1.0, 1.0]
2. Find the closest value in the data type

Step (1) is usually done by dividing by the absolute maximum (absmax) value.

9

Quantization Example: A non-standard 2-bit data type

Map: {Index: 0, 1, 2, 3 -> Values: -1.0, 0.3, 0.5, 1.0}

Input tensor: [10, -3, 5, 4]

1. Normalize with absmax: [10, -3, 5, 4] -> [1, -0.3, 0.5, 0.4]
2. Find closest value: [1, -0.3, 0.5, 0.4] -> [1.0, 0.3, 0.5, 0.5]
3. Find the associated index: [1.0, 0.3, 0.5, 0.5] -> [3, 1, 2, 2] -> store
4. Dequantization: load -> [3, 1, 2, 2] -> lookup -> [1.0, 0.3, 0.5, 0.5] ->

denormalize -> [10, 3, 5, 5]

10

Floating point data types (FP8)

3 bits for exponent, 4 for fraction:
● Good for large/small numbers
● Bad for precise numbers

1 bits for exponent, 6 for fraction:
● Good for precise numbers
● Bad for large/small numbers 11

Dynamic exponent quantization

1 0 0 1 1 0 0 1

} }Sign “-”

Exponent: 1e-2

Indicator bit

Fraction: 0.1 +
0.9*9/16 =
0.606

- 1e-2 * 0.606 = -6.06e-3

8-bit Approximations for Parallelism in Deep Learning. Dettmers, 2015.

Dynamic exponent and fraction bits:
● Good for small and large numbers
● High precision for small and intermediate numbers
● Bad precision for very large numbers

12

https://arxiv.org/abs/1511.04561

8-bit Optimizers

Motivation: Optimizers take up a lot of memory!
In

pu
t G

ra
di

en
ts

W
ei

gh
ts

G
ra

di
en

ts

M
ai

n
W

ei
gh

ts

A
da

m
 B

uf
fe

r 1

A
da

m
 B

uf
fe

r 2

Memory depends on seq len, batch
size, and model size

Memory that only depends on
model size

14

8-bit optimizers reduce memory consumption by 40%
W

ei
gh

ts

G
ra

di
en

ts

M
as

te
r W

ei
gh

ts

A
da

m
 B

uf
fe

r 1

A
da

m
 B

uf
fe

r 2 32-bit to 8-bit

W
ei

gh
ts

G
ra

di
en

ts

A
da

m
 B

uf
fe

rs

 1

+2

38% mem reduction

M
as

te
r W

ei
gh

ts

15

What do outliers in quantization look like?

16

Block-wise quantization

17

Putting it together: 8-bit optimizers

18

Results: Same accuracy/perplexity as 32-bit!

19

Ablations on Language Modeling: All components needed!

20

LLM.int8()

Large models such as OPT-175B need more than one computer to be run

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

8x GPU machine ($) 8x GPU machine ($)

Fast networking ($$$) ● OPT-175B requires 350 GB of GPU memory
● 15 consumer GPUs required for OPT-175B
● 7 high-end GPUs required ($15k per GPU)

With 8-bit weights we only need a single machine with consumer GPUs

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

8x GPU machine ($) 8x GPU machine ($)

Fast networking ($$$)

16-bit 8-bit

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

8x GPU machine ($)

Using OPT-175B on a single machine via 8-bit weights

With 8-bit weights we can reduce memory usage from 350 GiB to 175 GiB. This
fits into a single machine with 8 consumer GPUs! Does it work?

The problem with quantizing outliers with large values

Absmax linear quantization with very large outliers:

3.50, 0.10, 0.02, 1.00, 0.30, 0.01, 0.05, 0.10 -> 127, 5, 1, 50, 15, 0, 2, 5

7.50, 0.10, 0.02, 1.00, 0.30, 0.01, 0.05, 0.10 -> 127, 2, 0, 25, 6, 0, 1, 2

15.0, 0.10, 0.02, 1.00, 0.30, 0.01, 0.05, 0.10 -> 127, 0, 0, 10, 3, 0, 0, 1

25

Vector-wise quantization

Matrix multiplication is a series of inner products

Use two unique normalization constants for each inner product.

A @ B = C: [b x h] @ [h x o] -> [b x o]

1. Normalize A and B:
a. absmaxA_vec = A16.absmax(1): [b x h] -> [b]
b. absmaxB_vec = B16.absmax(0): [h x o] -> [o]
c. A8 = 127*A16/absmaxA_vec; B8 = 127*B16/absmaxB_vec: [b x h] * [b] -> [b x h]

2. C32 = A8 @ B8
3. C16f = C32/(127*127) * (absmaxA_vec @ absmaxB_vec): [b x o] + ([b] @ [o] -> [b x o])

26

Using OPT-175B on a single machine via 8-bit weights

With 8-bit weights we can reduce memory usage from 350 GiB to 175 GiB. This
fits into a single machine with 8 consumer GPUs! Does it work?

Emergent Features

Hidden states with dimension [sequence, hidden_dim], outliers are in some hidden
dimension.

You need to look in the right spots. At 2.7B there are 262,144 different hidden
state values and only 960 are outliers (0.3%). Its easy to miss!

Fortunately, it becomes more common and highly systematic with scale.

Finding outlier features in transformer hidden states

Hidden states in transformers: 125m

98.5% of the time

[0.3, -0.1, 0.4]

[-0.2, 0.5, 0.1]

[0.3, 0.9, -0.7]

1.5% of the time

[0.3, -0.1, -3.0]

[-0.2, 0.5, -6.0]

[0.3, 0.9, -7.0]S
eq

ue
nc

e
di

m
en

si
on

Hidden/feature
dimension

Hidden states in transformers: 350m

95% of the time

[0.3, -0.1, 0.4]

[-0.2, 0.5, 0.1]

[0.3, 0.9, -0.7]

5% of the time

[0.3, -0.1, 5.0]

[-0.2, 0.5, 6.0]

[0.3, 0.9, 8.0]

Hidden states in transformers: 2.7B

91% of the time

[0.3, -0.1, 0.4]

[-0.2, 0.5, 0.1]

[0.3, 0.9, -0.7]

9% of the time

[0.3, -0.1, -16.0]

[-0.2, 0.5, -10.0]

[0.3, 0.9, -27.0]

Hidden states in transformers: 6.0B

83% of the time

[0.3, -0.1, 0.4]

[-0.2, 0.5, 0.1]

[0.3, 0.9, -0.7]

17% of the time

[0.3, -0.1, -15.0]

[-0.2, 0.5, -17.0]

[0.3, 0.9, -22.0]

Hidden states in transformers: 6.7B. Phase shift!

25% of the time

[0.3, -0.1, 0.4]

[-0.2, 0.5, 0.1]

[0.3, 0.9, -0.7]

75% of the time

[0.3, -0.1, -40.0]

[-0.2, 0.5, -45.0]

[0.3, 0.9, -61.0]

Hidden states in transformers: 13B

~25% of the time

[0.3, -0.1, 0.4]

[-0.2, 0.5, 0.1]

[0.3, 0.9, -0.7]

~75% of the time

[0.3, -0.1, -75.0]

[-0.2, 0.5, -65.0]

[0.3, 0.9, -50.0]

Hidden states in transformers: 66B

~25% of the time

[0.3, -0.1, 0.4]

[-0.2, 0.5, 0.1]

[0.3, 0.9, -0.7]

~75% of the time

[0.3, -0.1, -95.0]

[-0.2, 0.5, -113.0]

[0.3, 0.9, -87.0]

Emergent features: sudden vs. smooth emergence

Emergent features: very large outliers after emergence

Further Analysis: Outliers are important for performance
Take 6.7B transformer language model.

Attention Top-1 probability (single layer):
- Baseline: 40%
- Remove random dimensions: 39.9%
- Remove outliers: 15%

C4 validation perplexity (all layers)
- Baseline: 14.4 ppl
- Remove random dimensions: 14.4 ppl
- Remove outliers: 44.0 ppl

Mixed precision decomposition

Multiply outlier hidden/features dimensions (0.1%) in 16-bit.

Multiply other hidden/features dimensions (99.9%) in 8-bit.

No performance degradation with LLM.int8()

Quantization as a practical tool for memory reduction

Bit-level Inference Scaling Laws

Inference cost are mostly loading the bits in the weight matrix!

Inputs

Weight matrixModerns GPUs can multiply 200 elements in the
same time it takes to load 1 element from memory.

Inference costs of
4-bit 60B and 8-bit 30B LLMs similar

Bit-level scaling laws experimental setup overview

● 35,000 zero-shot experiments (Lambada, Winogrande, PiQA, HellaSwag)
● 19m to 176B parameters
● OPT, BLOOM, BLOOMZ, Pythia/NeoX, GPT-2
● 3 to 8 bit precision (2-bit -> random performance)
● Two quantization concepts: centralization, blocking/grouping
● 4 data types: Integer, Float, dynamic exponent, quantile quantization

Given a zero-shot accuracy, what is the best k-bit quantization?

Does it help to treat outliers separately?

Comparison with GPTQ

What does help to improve scaling? Block size

What does help to improve scaling? Data types

Conclusion

8-bit optimizers make the training and fine-tuning more accessible.

LLM.int8() makes large language models more accessible, for example, zeroshot
prompting for OPT-175 on a single node or 65B LLaMA on a single GPU.

Currently, 4-bit precision seems to be best for bit-level scaling of LLM inference.
Improving bit-level scaling laws as a measure to improve inference latency.

k-bit methods work well in a variety settings and scales and can make deep
learning more efficient and more accessible.

